Exact computation of the maximum-entropy potential of spiking neural-network models.

نویسندگان

  • R Cofré
  • B Cessac
چکیده

Understanding how stimuli and synaptic connectivity influence the statistics of spike patterns in neural networks is a central question in computational neuroscience. The maximum-entropy approach has been successfully used to characterize the statistical response of simultaneously recorded spiking neurons responding to stimuli. However, in spite of good performance in terms of prediction, the fitting parameters do not explain the underlying mechanistic causes of the observed correlations. On the other hand, mathematical models of spiking neurons (neuromimetic models) provide a probabilistic mapping between the stimulus, network architecture, and spike patterns in terms of conditional probabilities. In this paper we build an exact analytical mapping between neuromimetic and maximum-entropy models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of Artificial Neural Network Models and Maximum Entropy in Zoning of Gully Erosion Sensitivity of Golestan Dam Basin

Zoning of gully erosion susceptibility and determining the factors controlling gully erosion is very important and vital. The aim of this study was to investigate the spatial distribution of gully erosion using two models of ANN and MaxEnt and to determine the factors affecting this type of erosion in Golestan Dam basin. Therefore, 14 factors in the form of three divisions, including topographi...

متن کامل

Spatiotemporal Conditional Inference and Hypothesis Tests for Neural Ensemble Spiking Precision

The collective dynamics of neural ensembles create complex spike patterns with many spatial and temporal scales. Understanding the statistical structure of these patterns can help resolve fundamental questions about neural computation and neural dynamics. Spatiotemporal conditional inference (STCI) is introduced here as a semiparametric statistical framework for investigating the nature of prec...

متن کامل

Gradient Descent for Spiking Neural Networks

Much of studies on neural computation are based on network models of static neurons that produce analog output, despite the fact that information processing in the brain is predominantly carried out by dynamic neurons that produce discrete pulses called spikes. Research in spike-based computation has been impeded by the lack of efficient supervised learning algorithm for spiking networks. Here,...

متن کامل

Comparison of M5 Model Tree and Artificial Neural Network for Estimating Potential Evapotranspiration in Semi-arid Climates

Evaporation is a fundamental parameter in the hydrological cycle. This study examines the performance of M5model tree and artificial neural network (ANN) models in estimating potential evapotranspiration calculated byPenman- Monteith and Hargreaves- Samani equations. Daily weather data from two meteorological stations in asemi-arid climate of Iran, namely Kerman and Zahedan, were collected duri...

متن کامل

Spiking Neural Networks: Principles and Challenges

Over the last decade, various spiking neural network models have been proposed, along with a similarly increasing interest in spiking models of computation in computational neuroscience. The aim of this tutorial paper is to outline some of the common ground in state-of-the-art spiking neural networks as well as open challenges.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 89 5  شماره 

صفحات  -

تاریخ انتشار 2014